1 B. Tech-I Semester - Regular Examinations-February 2014

ENGINEERING PHYSICS (Common for CSE, ECE, ECM, IT)

Marks: 5x14=70 Duration: 3 hours Answer any FIVE questions. All questions carry equal marks 1 a) Apply Schrodinger's wave equation to obtain the eigen values (permitted energy values) and eigen functions for a particle in a one-dimensional potential box. Comment 10 M on the obtained eigen values. b) Calculate the minimum energy of an electron which is bound in a one-dimensional box of width 4×10^{-10} m. 2 M c) Explain the physical significance of wave function Ψ . 2 M 2 a) What are miller indices? Draw the following planes 6 M in a cubic unit cell: (110), (311), and (011). b) Discuss in detail the theory, principle and working of Laue's X-ray diffraction technique. 4 M c) The lattice constant a = 8.5Å. Determine the angle of diffraction for first order reflections can occur from the planes of (111), assuming that the potential difference across the X-ray tube is 30kV. 4 M 4 M 3 a) Deduce an expression for Fermi-Dirac distribution.

	b)	Discuss the classical theory of motion of free electrons in periodic lattice.	n a 6 M
	c)	What is the concept of effective mass? Explain the significance of negative effective mass.	4 M
4	a)	Derive the Clausius-Mossotti relation and mention its significance.	6 M
	b)	Discuss the effect of frequency of applied field on dielectric constant.	4 M
	c)	Write a note on:	4 M
		(i) ferroelectric materials(ii) piezoelectric materials	
5	a)	Classify magnetic materials on the basis of atomic dipole moment.	6 M
	b)	A paramagnetic material of relative permeability 1.0036 is placed in a magnetic field of intensity 10 ⁴ A/m. Calculate the intensity of magnetization.	2 M
	c)	Explain Meissner effect and classify superconductors on the basis of this effect.	6 M
6	a)	Describe in detail the Einstein relation between diffusivity and mobility.	4 M
	b)	Derive continuity equation in semiconductors.	6 M

	C	Discuss the forward and reverse biasing of a pn junction diode.	4 M
7	a)	Mention the properties of lasers that distinguish it from ordinary light.	2 M
	b)	Describe the construction and working of a Ruby laser with relevant energy level diagram.	6 M
	c)	Describe in detail the working of fibre optics communica system.	tion 6 M
8	a)	Explain fundamental concepts of nanotechnology.	4 M
	b)	Write detailed notes on:	6 M
		(i) Scanning Electron Microscope (SEM)(ii) Transmission Electron Microscope (TEM)	
	c)	Mention the applications of nano materials.	4 M